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Between consecutive real roots of the polynomial p = x> — x? — 6x,
we find one root of its derivative!



Between consecutive real roots of the polynomial p = x> — x? — 6x,
we find one root of its derivative!

Let x7,x2 be two “consecutive” real roots of p.
Is it true that we always have one root of p’ between x1 and x;?



Recall: Rolle’s Theorem



If a real-valued function f is:

« continuous on a closed interval [a, b],
« differentiable on the open interval (a, b),
o and f(a) = f(b),

then there exists a c in the open interval (a, b) such that f/(c) = 0.



Let f be the polynomial p, and let the interval [a, b] be given by [x1, x2], where
x7 and x; are real roots of p.
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Let f be the polynomial p, and let the interval [a, b] be given by [x1, x2], where
x7 and x; are real roots of p.

If a real-valued function f is:
« continuous on a closed interval [a, b],
+ differentiable on the open interval (a, b),
o and f(a) = f(b),

then there exists a c in the open interval (a, b) such that f/(c) = 0.



Let f be the polynomial p, and let the interval [a, b] be given by [x1, x2], where
x7 and x; are real roots of p.

Note that p(x1) = p(x2) = 0.

If a real-valued function f is:
« continuous on a closed interval [a, b],
« differentiable on the open interval (a, b),
* and f(a) = f(b),

then there exists a c in the open interval (a, b) such that f/(c) = 0.



Let f be the polynomial p, and let the interval [a, b] be given by [x1, x2], where
x7 and x; are real roots of p.

If a real-valued function f is:
« continuous on a closed interval [a, b],
« differentiable on the open interval (a, b),
o and f(a) = f(b),

then there exists a c in the open interval (a, b) such that f/(c) = 0.

Observe that c is a root of the derivative!
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What can we say about complex roots?

Let us look at some examples.
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Goal: To show that the roots of P/ can be written as a convex combination of the
roots of P.
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Goal: To show that the roots of P’ can be written as a convex combination of the
roots of P.

Over the complex numbers, P is the product:

Plz) = o] [(z— @)
i=1
Consider a complex number z for which P(z) # 0.

Now, if z is a zero of £/ but still, P(z) # 0, then:
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Goal: To show that the roots of P’ can be written as a convex combination of the
roots of P.

Over the complex numbers, P is the product:

z) = “ﬁ(Z* ai)
iz

Consider a complex number z for which P(z) # 0.

Now, if z is a zero of £/ but still, P(z) # 0, then:
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Goal: To show that the roots of P’ can be written as a convex combination of the
roots of P.

Over the complex numbers, P is the product:

z) = “ﬁ(Z* ai)
iz

Consider a complex number z for which P(z) # 0.

Now, if z is a zero of £/ but still, P(z) # 0, then:

Z zZ—ai
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This may also be written as:
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This may also be written as:
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This may also be written as:
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This may also be written as:

Note that the (3{s are positive and sum to one.
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A complex-valued function on the circle is called a trigonometric polynomial if
there are complex constants cy. such that
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It is of degree n if ¢,y Or c_, isnot 0.



A complex-valued function on the circle is called a trigonometric polynomial if
there are complex constants ¢y such that

£(0) = Z cretke,

k=—n

It is of degree nif ¢, or c_y, is not 0.

The complex numbers ¢y are called the (Fourier) coefficients of f.



A trig polynomial f is the zero function if and only if all its coefficients vanish.



A trig polynomial f is the zero function if and only if all its coefficients vanish.

We can recover the coefficients cy. of a trig polynomial by integration:
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If f(0) = O for all 6, then each of these integrals vanishes and the non-trivial
assertion follows.



A trig polynomial f is the zero function if and only if all its coefficients vanish.

We can recover the coefficients cy of a trig polynomial by integration:

n

27
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Ck = 5— E coetVek0gp,

2 )y
(=—m

If £(0) = 0 for all 6, then each of these integrals vanishes and the non-trivial
assertion follows.
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The trig polynomial f is real-valued if and only if f = f. This becomes:
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We show: A trig polynomial is real-valued if and only if ¢, = ¢ for all k.

The trig polynomial f is real-valued if and only if f = f. This becomes:

n n
2 Cke1k9: Z qe—lke

k=—m k=—m

Replacing k by —k in the second sum, we see that f is real-valued if and only if

n -n n
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We show: A trig polynomial is real-valued if and only if ¢, = ¢ for all k.

The trig polynomial f is real-valued if and only if f = f. This becomes:

n n
2 Cke1k6: Z @e—lke

k=—m k=—mn
Replacing k by —k in the second sum, we see that f is real-valued if and only if

n n

Z k0 _ Z o <elke Z kaeLkO

k n k n

The difference of the two far sides is the zero function; hence the conclusion
follows.
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Then there is a complex polynomial p such that £(8) = [p(e*©)|?.



(Fejer-Riesz) Let f be a trig polynomial with (8) = 0 for all ©.
Then there is a complex polynomial p such that £(8) = [p(e*©)|?.

Assume f is of degree d and write f(0) = > _ _ cxe'*® wherec_y =
since f is real-valued. Note also that cq = 0.



Define a polynomial q in one complex variable by:

d
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Let &1,..., &24 be the roots of the polynomial g.



Define a polynomial g in one complex variable by:

d
q(z):zd Z cxzk.
k=—d

Let &1,..., &24 be the roots of the polynomial g.

(laim that the reality of f implies that if & is a root of g,
then (£)~" is also a root of q.

This point is called the reflection of £ in the circle.
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Because 0 is not a root, the claim follows from the formula:

q(z) =2*%((2)).
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Because 0 is not a root, the claim follows from the formula:

q(z) =2*%((2)).

We now verify this formula:

ZZdW = de ckil—k =

=z4 Eﬁz_k = z4 Z c,kzk =zd Z ckzk




Because 0 is not a root, the claim follows from the formula:

q(z) =2*%((2)).

We now verify this formula:

ZZdW = de ckil—k =

=z Eﬁz_k =z4 Z Tzl =24 Z ez’ = q(z).



It also follows that each root on the circle must occur with even multiplicity. Thus
the roots of q occur in pairs, symmetric with respect to the unit circle.



It also follows that each root on the circle must occur with even multiplicity. Thus
the roots of q occur in pairs, symmetric with respect to the unit circle.

By the Fundamental Theorem of Algebra, we may factor the polynomial q into
linear factors.



For z on the circle we can replace the factor z — (&)
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Here we use all the roots in the unit disc and half the roots on the circle. Note
that q = |p|? on the circle.
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Here we use all the roots in the unit disc and half the roots on the circle. Note
that q = |p|? on the circle.
Since f > 0 on the circle, we have:

£(0) = [f(0)] = Iq(e*?|



Here we use all the roots in the unit disc and half the roots on the circle. Note
that q = |p|? on the circle.
Since f > 0 on the circle, we have:

£(0) = If(0) = [q(e*®| = [p(e*?]%.
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A continuous real valued function defined on a closed rectangle (or, a disc) in the
plane is bounded and takes on an absolute minimum and an absolute maximum
value.



A continuous real valued function defined on a closed rectangle (or, a disc) in the
plane is bounded and takes on an absolute minimum and an absolute maximum
value.

We now show: If f is a continuous real valued function on the plane such that
f(x,y) goes to infinity as (x,y) go to infinity, then f takes an absolute minimum
value at some point of the plane.



Set fo = |f(0, 0)|. We may choose r > 0 such that:
f(x,y) > fo forall (x,y) withx* +y2 > r.

Choose a rectangle R containing the disc of radius r centred at the origin.



Set fo = |f(0, 0)|. We may choose r > 0 such that:
f(x,y) > fo forall (x,y) withx* +y2 > r.

Choose a rectangle R containing the disc of radius r centred at the origin.

Pick m in the rectangle R such that the minimum of f occurs at m.



Set fo = |f(0, 0)|. We may choose r > 0 such that:
f(x,y) > fo forall (x,y) withx* +y2 > r.

Choose a rectangle R containing the disc of radius r centred at the origin.
Pick m in the rectangle R such that the minimum of f occurs at m.

Since (0,0) is in the rectangle R, it follows that f(m) is at most fo. Since
outside the rectangle R, the value of f is at least f(, the value of f at m is the
minimum of f on the whole plane, not just on R!



Let f(z) = anz™ + - - - + ap, where, fori = 0, 1,...n, the a; are in C, and
an =0.



Let f(z) = anz™ + - - - + ap, where, fori = 0, 1,...n, the a; are in C, and
an =0.

Setting z = x + 1y, we may write

f(z) = plx,y) +1q(x,y),

where p, q are polynomials in two real variables x and y.



Let f(z) = anz™ + - - - + ap, where, fori = 0, 1,...n, the a; are in C, and
an =0.
Setting z = x + 1y, we may write
f(z) = p(x,y) +1q(xy),
where p, q are polynomials in two real variables x and y. Thus,
[f(2)] = (p(x, y)? + q(x,y)*)?

may be thought of as a continuous function the two real variables.



We have

bn_ bn_ b
n1+n22+'_.0
V4

f(z) = lan| 21 +

n”

whereb; = Stforo <i<n-—1.
n
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We have

bn_ bn_ b
n1+n22+'_.0
V4

f(z) = lan| 21 +

zn”
where by = 2+ for0 <i < n — 1. Now,
n

b1 bno2 bo b1 bnro

The term we are subtracting on the right is at most

[br_1] N lbrn2l | Ibol
2| |z|2 |z[™’

and this approaches zero as |z| approaches infinity.

- +o === - o
2 ol = N=1= o2

zn’



Thus the quantity on the left of this inequality, for large enough |z|, is at least %
Hence [f(z)] is at least ‘“—Z‘ |z|"™ for large |z|.



Thus the quantity on the left of this inequality, for large enough |z|, is at least %
Hence [f(z)] is at least ‘“—Z‘ |z|"™ for large |z|.

Therefore, there must exist a point m = a + 1b at which |f| attains its absolute
minimum.



Thus the quantity on the left of this inequality, for large enough |z|, is at least %
Hence [f(z)] is at least ‘“—Z‘ |z|"™ for large |z|.

Therefore, there must exist a point m = a + 1b at which |f| attains its absolute
minimum.

We will show that f(m) must be zero.
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Let g(z) = f(z + m). The polynomial g is again of degree n, it takes on the
same set of values as f.
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But |g| is minimum at z = 0, where the value is [f(0 + m)| = [f(m)].



SIMPLIFICATION 1

Let g(z) = f(z + m). The polynomial g is again of degree n, it takes on the
same set of values as f.

But |g| is minimum at z = 0, where the value is [f(0 + m)| = [f(m)].

We now assume that g(0) = « is not zero.



SIMPLIFICATION 2

Replace g by h := g% This new function h has its absolute minimum at z = 0,
and the minimum value of h, which is taken at 0, is 1.



SIMPLIFICATION 2

Replace g by h := g% This new function h has its absolute minimum at z = 0,
and the minimum value of h, which is taken at 0, is 1.

Clearly, h(0) = 1,and his of the form:
_ i

h(z) = Bnz™ + -+ + 1,where B; = oT(] <i<n),
0

where o;’s are the coefficients of the polynomial g.



SIMPLIFICATION 3

We know that 3, = 0. Pick the smallest k < n such that B, = 0. We don't
rule out the possibility of k being equal to either 1 or n, yet.



SIMPLIFICATION 3

We know that 3, = 0. Pick the smallest k < n such that B, = 0. We don't
rule out the possibility of k being equal to either 1 or n, yet.

If we replace the polynomial h(z) by h(cz), where c is some fixed complex
number, then none of the properties of h change.



Choose c to be the kth root (E—l)]?. The new polynomial h(cz) with this choice
of ¢ has the representation

1T— 284 Bzt - Brz™



Choose c to be the kth root (E—l)]?. The new polynomial h(cz) with this choice
of ¢ has the representation

1T— 284 Bzt - Brz™

So, we may assume, without loss of generality that 3, = —1. If k = n, then
h(z) = 1 —z™ and we are done. So, we may assume, again without loss of
generality, that k < n.



The main point: We need to show that the minimum absolute value of
T— 284 Bz 4 Bz

is less than 1 arriving at a contradiction arising out of our assumption that f(m)
is not 0.



The main point: We need to show that the minimum absolute value of
T— 284 Bz 4 Bz

is less than 1 arriving at a contradiction arising out of our assumption that f(m)
is not 0.

We shall indeed show that [h(z)| < 1 for small positive real z. to see this,
choose z to be real and with 0 < z < 1.
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We have

h(z)] = =284 Brp1z"" +- Bnz"|
< =25+ B2+ Bz
< (T—2z¢) +|Bk+1|Zk+] + o+ Bnlz™

1-25(0 —w(2)),
where w(z) = (IBxs1lz+ -+ +[Bnlz™¥).
For a small positive number z, we have 0 < 1 — z*(1 —w(z)) < 1. Since

[h(z)| < 1—2z%(1 —w(z)), it follows that [h| takes values smaller than 1 and
therefore [h(z)| cannot have its minimum at 0.



We have

Ih(z)|

1 =25+ Brear 2 4 Bz
=25+ Bz + - Bnz"
(T—zi) + Brrr 257+ + [Bnlz™
1—25(1 —w(z),

NN

where w(z) = (IBxs1lz+ -+ +[Bnlz™¥).

For a small positive number z, we have 0 < 1 — z*(1 —w(z)) < 1. Since
[h(z)| < 1—2z%(1 —w(z)), it follows that [h| takes values smaller than 1 and
therefore [h(z)| cannot have its minimum at 0.

This concludes the proof of the Fundamental Theorem of Algebra.
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have that f(w) = 0 if and only if there exists a polynomial g of degree n — 1
such that f(z) = (z —w)g(z),z € C.



CONSEUOENCE 1

Let f be a polynomial of degree n.. Then given any complex number w € C, we
have that f(w) = 0 if and only if there exists a polynomial g of degree n — 1
such that f(z) = (z —w)g(z),z € C.

The proof in the forward direction follows since
flw) :=anw™ + -+ aw+ap =0,
implying
fz) =anz™ + -+ ajz+ a0 — (anw™ + -+ ayw + ap),

which is easily seen to be of the required form.
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CONSEQUENCE 2

There are at most n distinct complex numbers w for which f(w) = 0.

The proof is by induction - it is true for a linear polynomial.



CONSEQUENCE 2

There are at most n distinct complex numbers w for which f(w) = 0.

The proof is by induction - it is true for a linear polynomial.

If f is any polynomial of degree n, then it must vanish at some w, and hence is of
the form (z — w)g(z) for some polynomial g of degree n — 1. The polynomial
g has m — 1 zeros by the induction hypothesis.



